

1-WIRE® DEVICES BATTERY MANAGEMENT TINI - TINY INTERNET INTERFACES Mar 12, 2002

APPLICATION NOTE 155

1-Wire Software Resource
Guide

There are over 30 different 1-Wire® devices including iButtons® that Dallas Semiconductor currently produces. Navigating the
available API's, software examples, and other resources to communicate with this array of devices or finding the correct resource for
a single device type can be a daunting task. This document provides an overview of the available resources and a selection guide.
The current 1-Wire devices are also presented in a convenient table providing device descriptions and family code lookup.

The available APIs include the 1-Wire API for Windows (TMEX), 1-Wire COM interface (OWCOM), 1-Wire Public Domain (PD), and
1-Wire API for Java™ (OWAPI). All of the API's described in this document are free to use without restriction and in most cases
include the complete source code.

Introduction

There are over 30 different 1-Wire® devices including iButtons® that Dallas Semiconductor currently produces. Navigating the
available API's, software examples, and other resources to communicate with this array of devices or finding the correct resource for
a single device type can be a daunting task. This guide provides an overview of the available resources and a selection guide. All of
the API's described in this document are free to use without restriction and in most cases include the complete source code.

1-Wire Overview

The Dallas Semiconductor 1-Wire bus is a simple signaling scheme that performs two-way communications between a single master
and peripheral devices over a single connection. A powerful feature that all 1-Wire bus devices share is that each and every device,
in a chip or an iButton, has a factory-lasered serial number that will never be repeated in any other device. That is to say, every
device is unique. This allows any single device to be individually selected from among many that can be connected to the same bus
wire. Because one, two, or even dozens of 1-Wire devices can share a single wire for communications, a binary searching algorithm
is used to find each device in turn. Once each device serial number is known, any device can be uniquely selected for communication
using that serial number to address it.

The first part of any communication involves the bus master issuing a "reset" which synchronizes the entire bus. A slave device is
then selected for subsequent communications. This can be done by selecting all slaves, selecting a specific slave (using the serial
number of the device), or by discovering the next slave on the bus using a binary search algorithm. These commands are referred to
collectively as "network" or ROM (Read-Only-Memory) commands. Once a specific device has been selected, all other devices drop
out and ignore subsequent communications until the next reset is issued.

Once a device is isolated for bus communication the master can issue device-specific commands to it, send data to it, or read data
from it. Because each device type performs different functions and serves a different purpose, each has a unique protocol once it has
been selected. Even though each device type may have different protocols and features, they all have the same selection process
and follow the command flow as seen in Figure 1.

Figure 1. Typical 1-Wire Communication Flow

An integral part of the unique serial number in each slave is an 8-bit family code. This code is specific to the device model. Because
each device model performs different functions, this code is used to select the protocol that will be used to control or interrogate it.
See Table 1 for a mapping of family codes to Dallas Semiconductor part numbers.

1 of 24

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/5/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/37/ln/en

Table 1. Family Code Reference

Family Code Part Number
() iButton Package

Description
(Memory size in bits unless specified)

01 (hex) (DS1990A)*, DS2401 1-Wire net address (serial number) only
02 (DS1991), DS1425 Multikey iButton, 1152-bit secure memory
04 (DS1994), DS2404 4k NV RAM memory and clock, timer, alarms
05 DS2405 Single addressable switch
06 (DS1993) 4k NV RAM memory
08 (DS1992) 1k NV RAM memory
09 (DS1982), DS2502 1k EPROM memory
0A (DS1995) 16k NV RAM memory
0B (DS1985), DS2505 16k EPROM memory
0C (DS1996), (DS1996x2), (DS1996x4) 64k to 256k NV RAM memory
0F (DS1986), DS2506 64k EPROM memory
10 (DS1920), DS1820, DS18S20 Temperature with alarm trips
12 DS2406, DS2407 1k EPROM memory, two channel addressable switch
14 (DS1971), DS2430A 256-bit EEPROM memory and 64-bit OTP register
18 (DS1963S) 4k NV RAM memory and SHA-1 engine
1A (DS1963L) 4k NV RAM memory with write cycle counters
1D DS2423 4k NV RAM memory with external counters
1F DS2409 2 channel addressable coupler for sub-netting
20 DS2450 4 channel A/D
21 (DS1921), (DS1921H), (DS1921Z) Thermochron™ temperature logger
22 DS1822 Econotemperature
23 (DS1973), DS2433 4k EEPROM memory
24 (DS1904), DS2415 Real-time clock (RTC)
26 DS2438 Temperature, A/D
27 DS2417 RTC with interrupt
28 DS18B20 Adjustable resolution temperature
2C DS2890 Single channel digital potentiometer
30 DS2760 Temperature, current, A/D
33 (DS1961S), DS2432 1k EEPROM memory with SHA-1 engine
91 (DS1981) 512-bit EPROM memory (Uniqueware only)
96 (DS1955), (DS1957B) Java™-powered cryptographic iButton (64kB ROM, 6kB to 134kB NV RAM)

API Fundamentals

The different API's for communicating with 1-Wire devices have common features that reflect the fundamental communication issues
arising from the protocol. Below are the common groupings of the functions for the different API's. Since most 1-Wire devices have
memory, the memory IO functions are treated as a common API group even though the functions do not apply to all devices. All other
non-memory specialty functions are lumped into the DEVICE grouping.

API Function Groupings

SESSION
Negotiate exclusive use of the 1-Wire bus. This is particularly important on operating systems or environments where several
processes or threads could simultaneously want access to the same 1-Wire bus. Exclusive use of the network is required
when doing multiple operations on a single device that must not be interrupted.

LINK

2 of 24

Primitive 1-Wire bus communication functions. All 1-Wire communication can be condensed down to the 'reset' that resets all
devices and reading and writing bits. This group can also contain functions to set the electrical characteristics of the bus such
as when providing special EPROM programming pulses or power delivery.

NETWORK
NETWORK functions for device discovery and selection. The unique serial number lasered into each 1-Wire device is used
as its network address. These functions can be constructed from the LINK level functions. Data sheets for 1-Wire devices
refer to these as ROM commands since the serial number is Read-Only-Memory. Some 1-Wire masters contain built-in
network functions that are more efficient then constructing them with the link functions.

TRANSPORT
Block communication and primitive read/write memory functions. It can also include packet read/write memory functions.
These functions are constructed from the NETWORK and LINK group functions.

FILE
FILE memory level functions using the 1-Wire File Structure (see Application Note 114). These functions are constructed from
the NETWORK and TRANSPORT level functions. Only useful for devices with more then one page of memory.

The typical sequence to use these functions is outlined in Figure 2. The 'session' functions wrap around the communication calls to
the device, which typically involve using a 'network' function followed by a memory or 'device' specific operation.

 Figure 2. API Usage Flow

The nature of iButton communication is inherently 'touch'. This means that contact with the device is not always reliable. The iButton
might be inserted into the reader and bounce around during the read. Consequently a consistent methodology of error recovery must
be rigorously followed. This usually entails doing retries when a spurious error is detected and utilizing CRC checks in data
communication. The File IO functions in the API's use a standard file structure detailed in Application Note 114: "1-Wire File
Structure". This structure uses a CRC16 on every page of data to quickly verify the validity of the data being read. Most of the 1-Wire
API functions have little or no automatic retries. The retries are under application control. See the Application Note 159: "Ultra

3 of 24

http://www.maxim-ic.com/appnotes.cfm/appnote_number/114
http://www.maxim-ic.com/appnotes.cfm/appnote_number/114
http://www.maxim-ic.com/appnotes.cfm/appnote_number/114
http://www.maxim-ic.com/appnotes.cfm/appnote_number/159

Reliable 1-Wire Communication" for methodology of error recovery and risk assessment in doing 1-Wire communication.

API Selection

There are principally four different Application Program Interfaces (API) that are considered by this document. The API's operate on
different platforms, use different languages, and have different capabilities. Table 2 displays the four API's with a brief description.

Table 2. API Descriptions

API Abbreviation Description

1-Wire Public Domain PD Complete open source C code that primarily supports the serial DS9097U adapter on many
platforms.

1-Wire API for Java OWAPI Complete open source Java code that supports almost ALL 1-Wire devices. The only non-
native 1-Wire master supported is the DS9097U serial adapter.

1-Wire COM OWCOM Windows Component Object Model (COM) wrapper for OWAPI. Accessible from standard
languages and scripting languages like JavaScript and Visual Basic Script.

TMEX API TMEX
Supports all 1-Wire master adapters on Windows 32-bit platforms. Provides link and file IO
functions but no device functions. Drivers are closed source. This API called by other API's to
get access to all of the 1-Wire adapter types.

Table 3 maps the operating system with the available API's divided by language.

Table 3. API Operating System and Language Coverage

OS Windows Language
Independent C Java

Windows 2000 TMEX / OWCOM PD OWAPI
Windows ME TMEX / OWCOM PD OWAPI
Windows 98 TMEX / OWCOM PD OWAPI
Windows 95 TMEX PD OWAPI
Windows XP (TMEX) / (OWCOM) (PD) (OWAPI)
Win3.1 PD
DOS PD
PALM PD
VISOR PD
PocketPC PD
Solaris (PD) OWAPI
Linux PD OWAPI
TINI* (PD)- w/o TINI OS OWAPI
() - support planned but not yet complete

*Note that TINI® is an embedded platform with a Java-based OS made by Dallas Semiconductor http://www.maxim-ic.com/TINI

The support of the individual device families also varies from API to API. Table 4 lists all of the currently available 1-Wire devices with
flags indicating the available support in each API. The flags 'key' is at the bottom of the table.

Table 4. API Support by Device

Device FC Description TMEX PD OWAPI OWCOM
DS1425 02 Multikey iButton, 1152-bit secure memory AB (MS) ABI ABC ABC

DS1427 04 4k NV RAM memory and clock, timer, alarms ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

4 of 24

http://www.maxim-ic.com/appnotes.cfm/appnote_number/159
http://www.maxim-ic.com/TINI

DS1820 10 Temperature and alarm trips AB (MS) ABI (PS) ABCI ABCI
DS18B20 28 Adjustable resolution temperature AB (MS) AB (MS) ABI ABI
DS18S20 10 Temperature and alarm trips AB (MS) ABI (PS) ABCI ABCI
DS1981 91 512-bit EPROM memory (Uniqueware only) ABCE AB (MS) AB (MS) AB (MS)
DS1982 09 1k EPROM memory ABCE (MS) ABCDE ABCDE ABCDE
DS1985 0B 16k EPROM memory ABCE (PS) ABCDE ABCDE ABCDE
DS1986 0F 64k EPROM memory ABCE (PS) ABCDE ABCDE ABCDEFGH
DS1904 24 RTC AB (MS) AB (MS) ABI ABI
DS1920 10 Temperature and alarm trips AB (MS) ABI (PS) ABCI ABCI
DS1921
DS1921H
DS1921Z

21 Thermochron temperature logger ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

DS1955
DS1957 96 Java-powered cryptographic iButton (64kB ROM, 6kB to 134kB

NV RAM) AB (MS) ABI ABI ABI

DS1961S 33 1k EEPROM memory with SHA-1 engine ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

DS1963L 1A 4k NV RAM memory with write cycle counters ABDE (PS) ABCDE ABCDEFGH ABCDEFGH
DS1963S 18 4K NVRAM memory and SHA-1 engine ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

DS1971 14 256-bit EEPROM memory and 64-bit OTP register ABD (PS) ABCDI ABCDI ABCDI
DS1973 23 4k EEPROM memory ABDE (PS) ABCDE ABCDEFGH ABCDEFGH
DS1990A 01 1-Wire address only AB AB AB AB
DS1991 02 Multikey iButton, 1152-bit secure memory AB (MS) ABC ABC ABC

DS1992 08 1k NV RAM memory ABDE (PS) ABCDE ABCDEFGH ABCDEFGH

DS1993 06 4k NV RAM memory ABDE (PS) ABCDE ABCDEFGH ABCDEFGH
DS1994 04 4k NV RAM memory and clock, timer, alarms ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

DS1995 0A 16k NV RAM memory ABDE (PS) ABCDE ABCDEFGH ABCDEFGH
DS1996 0C 64k NV RAM memory ABDE (PS) ABCDE ABCDEFGH ABCDEFGH
DS1996x2
DS1996x4 0C 64k*2 (128k) NV RAM memory

64k*4 (256k) NV RAM memory ABDE (PS) ABCDE ABCDEFGH ABCDEFGH

DS2401 01 1-Wire address only AB AB AB AB
DS2405 05 Single switch AB (MS) ABI ABI ABI
DS2404 04 4k NV RAM memory and clock, timer, alarms ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

DS2406
DS2407 12 1k EPROM memory, 2 channel addressable switch ABCE (PS) ABCEI ABCEI ABCEI

DS2409 1F Dual switch, coupler AB (MS) ABI ABI ABI
DS2415 24 RTC AB (MS) AB (MS) ABI ABI
DS2417 27 RTC with interrupt AB (MS) AB (MS) ABI ABI
DS2423 1D 4k NV RAM memory with external counters ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

DS2430A 14 256-bit EEPROM memory and 64-bit OTP register ABD (PS) ABCDI ABCDI ABCDI
DS2432 33 1k EEPROM memory with SHA-1 engine ABDE (PS) ABCDEI ABCDEFGHI ABCDEFGHI

DS2450 20 Quad A/D AB (MS) ABI ABI ABI
DS2438 26 Temperature, A/D AB (MS) ABI ABCI ABCI
DS2502 09 1k EPROM memory ABCE (PS) ABCDE ABCDE ABCDE
DS2505 0B 16k EPROM memory ABCE (PS) ABCDE ABCDE ABCDE
DS2506 0F 64k EPROM memory ABCE (PS) ABCDE ABCDE ABCDEFGH
DS2760 30 Temperature, current, A/D AB (MS) AB (MS) ABI ABI
DS2890 2C Single channel digital potentiometer AB (MS) AB (MS) ABI ABI

Support Flags:

5 of 24

1. 1-Wire link primitive support
2. 1-Wire network support
3. Transport memory byte read/write support
4. Transport memory packet read/write support
5. 1-Wire File Structure Type AA support (see Application Note 114 for File Structure types)
6. 1-Wire File Structure Type AB support
7. 1-Wire File Structure Type BA support
8. 1-Wire File Structure Type BB support
9. Other device-specific support

(MS) indicates that the device is minimally supported.
(PS) indicates that the device is partially supported.
If there is no mark, the device is considered fully supported.

Bold flags indicate that the current pre-release version of this API does not yet support this feature flag, but it will be supported in the
final release.

1-Wire Public Domain (PD) Overview

The functions provided in 1-Wire PD API are completely written in 'C' and are intended to be used on platforms not supported by the
TMEX API. The '1-Wire net' (or MicroLAN) is a 1-Wire and ground network with one master and one or more slave devices. This API
creates a 1-Wire master that can be used to identify and communicate with slave devices. It provides all of the 1-Wire, transport and
file level services to communicate with all of the Dallas Semiconductor 1-Wire devices including iButtons.

The location of this API kit and sample platform builds is:
http://www.ibutton.com/software/1wire/wirekit.html

The 'C' source code to this API is designed to be portable. There are provided 'TODO' templates to be completed for a specific
platform. Several platform example implementations have been provided including: Windows 32-bit, Linux, Visor, Palm, and
PocketPC. There are also several example applications that use these platform implementations.

There are two sets of portable source files. The first set is general purpose and is intended for platforms that already have the
primitive link 1-Wire communication functions (general). This is the lowest level that is hardware dependent. The other set of portable
source files assumes that the user has a serial port (RS232) and wishes to utilize the 'Universal Serial 1-Wire Line Driver Master:
DS2480B' (userial). This chip receives commands over the serial port, performs 1-Wire operations and then sends the results back to
the serial port. The source code converts the intended 1-Wire operations into serial communications packets to the DS2480B. The
only module that need be provided for a platform are the serial port read/write primitives. The DS2480B is the interface chip used in
all of the DS9097U series serial adapters.

These two sets of portable source code files implement the same 1-Wire API functions and are interchangeable. Figure 2 shows the
available API for the version 3.00 of the 1-Wire PD code base. Note that the non-memory device specific functions are not listed in
detail due to their large number. The outline below maps the source files that provide the functions and the required modules for new
platforms.

In addition to the portable 'C' modules in the PD kit download, there are also a limited number of microprocessor assembly examples
to do 1-Wire communication. The file functions in this API implement the 1-Wire File Structure type 'AA' as defined by Application
Note 114.

As the name of this API would imply, the source code provided has a license that is as close to public-domain as possible.
Developers are free to use and integrate this code into their applications without restriction.

PD API Functions

● SESSION
❍ owAcquire: Acquires the 1-Wire net.
❍ owRelease: Releases the previously acquired 1-Wire net.

● LINK

❍ owHasOverDrive: Indicates whether the adapter has overdrive capability.

6 of 24

http://www.maxim-ic.com/appnotes.cfm/appnote_number/114
http://www.ibutton.com/software/1wire/wirekit.html
http://www.maxim-ic.com/appnotes.cfm/appnote_number/114
http://www.maxim-ic.com/appnotes.cfm/appnote_number/114
http://www.maxim-ic.com/appnotes.cfm/appnote_number/114

❍ owHasPowerDelivery: Indicates whether the adapter can deliver power.
❍ owHasProgramPulse: Indicates whether or not EPROM programming voltage is available.
❍ owLevel: Sets the 1-Wire net line level to Normal (5V weak pullup), Power Delivery (5V strong pullup), or Program

Level (12V EPROM programming level).
❍ owProgramPulse: Sends timed programming pulse for EPROM 1-Wire device writing.
❍ owReadBitPower: Reads 1 bit and then optionally supplies power.
❍ owReadByte: Receives 8 bits from the 1-Wire net by sending all 1's (0xFF).
❍ owSpeed: Sets the speed of the 1-Wire net to Normal (16k bits) or Overdrive (142k bits).
❍ owTouchBit: Sends and receives 1 bit from the 1-Wire net.
❍ owTouchByte: Sends and receives 8 bits from the 1-Wire net.
❍ owTouchReset: Resets all devices on the 1-Wire net and returns result.
❍ owWriteByte: Sends 8 bits to the 1-Wire net and verifies the echo received matches.
❍ owWriteBytePower: Sends 8 bits of communication to the 1-Wire net and then supplies power.

● NETWORK

❍ owAccess: Selects the current device and readies it for a device-specific command.
❍ owFamilySearchSetup: Sets up the following search (owNext) to find a specific family type .
❍ owFirst: Searches to find the 'first' 1-Wire device on the 1-Wire net.
❍ owNext: Searches to find the 'next' 1-Wire device on the 1-Wire net.
❍ owOverdriveAccess: Selects the current device and places it in Overdrive speed.
❍ owSerialNum: Retrieves or sets the currently selected device serial number (ROM number).
❍ owSkipFamily: Skips all of the 1-Wire devices with the family type that was found in the last search.
❍ owVerify: Selects and verifies that the current device is present (alarming option).

● TRANSPORT

❍ owBlock: Sends and receives a block of data to the 1-Wire net with optional reset.
❍ owCanLockPage: Checks to see if the given memory bank has pages that can be locked.
❍ owCanLockRedirectPage: Checks to see if the given memory bank has pages that can be locked from being

redirected.
❍ owGetAlternateName: Gets the alternate part numbers or names.
❍ owGetBankDescription: Gets a string description of the memory bank.
❍ owGetDescription: Gets a short description of the 1-Wire device type.
❍ owGetExtraInfoDesc: Gets a description of what is contained in the extra information.
❍ owGetExtraInfoLength: Gets the length in bytes of extra information in this memory bank.
❍ owGetMaxPacketDataLength: Gets maximum data length in bytes for a packet.
❍ owGetName: Gets the part number of the 1-Wire device as a string.
❍ owGetNumberBanks: Gets the number of memory banks for a certain 1-Wire family group.
❍ owGetNumberPages: Gets the number of pages in a given memory bank.
❍ owGetPageLength: Gets the raw page length in bytes for a given memory bank.
❍ owGetSize: Gets the size of a given memory bank in bytes.
❍ owGetStartingAddress: Gets the physical starting address of the given memory bank.
❍ owHasExtraInfo: Checks to see if this memory bank's pages deliver extra information when read.
❍ owHasPageAutoCRC: Checks to see if the memory bank has device generated CRC verification when reading a

page.
❍ owIsGeneralPurposeMemory: Checks to see if the memory bank is general purpose user memory.
❍ owIsNonvolatile: Checks to see if current memory bank is nonvolatile.
❍ owIsReadOnly: Checks to see if the memory bank is read-only.
❍ owIsReadWrite: Checks to see if the memory bank is read/write.
❍ owIsWriteOnce: Checks to see if the memory bank is write once such as with EPROM.
❍ owNeedsPowerDelivery: Checks to see if this memory bank requires 'PowerDelivery' to write.
❍ owNeedsProgramPulse: Checks to see if this memory bank requires a 'ProgramPulse' to write.
❍ owRead: Reads a portion of a memory bank in raw mode (no packets, CRC).
❍ owReadPage: Reads an entire page of a memory bank in raw mode (no packets, CRC).
❍ owReadPageCRC: Reads an entire page of a memory bank with device generated CRC verification.
❍ owReadPageExtra: Reads an entire raw page of a memory bank including any 'extra' information (no packets, CRC).
❍ owReadPageExtraCRC: Reads an entire raw page of a memory bank including any 'extra' information and with

device generated CRC verification.
❍ owReadPagePacket: Reads a Universal Data Packet from a page in a memory bank (See Application Note 114 for

Universal Data Packet structure description).
❍ owReadPagePacketExtra: Reads a Universal Data Packet from a page in a memory bank with 'extra' information.
❍ owRedirectPage: Checks to see if the memory bank has pages that can be redirected.
❍ owWrite: Writes a portion of a memory bank in raw mode.
❍ owWritePagePacket: Writes a Universal Data Packet to a page in a memory bank.

● FILE

7 of 24

http://www.maxim-ic.com/appnotes.cfm/appnote_number/114

❍ owAttribute: Changes the attributes of a file.
❍ owChangeDirectory: Changes the current directory.
❍ owCloseFile: Closes a file.
❍ owCreateDir: Creates a directory.
❍ owCreateFile: Creates a file for writing.
❍ owCreateProgramJob: Creates a write buffer for logging EPROM programming pending jobs.
❍ owDeleteFile: Deletes a file.
❍ owDoProgramJob: Write the pending EPROM programming jobs.
❍ owFirstFile: Finds the first file in the current directory.
❍ owFormat: Formats the 1-Wire File Structure file system.
❍ owGetCurrentDir: Gets the current directory.
❍ owNextFile: Finds the next file in the current directory.
❍ owOpenFile: Opens a file for reading.
❍ owReadFile: Reads an opened file.
❍ owReadFile: Reads data from a file.
❍ owRemoveDir: Removes a directory.
❍ owReNameFile: Changes the name of a file.
❍ owWriteFile: Writes to a file that has been created.

● DEVICE

❍ DoAtoDConversion: Does an A/D conversion on DS2450.
❍ ReadSwitch12: Reads the state of the DS2406 switch
❍ GetFirmwareVersionString: Gets the firmware version string for a Java-powered iButton
❍ ... too numerous to list all device-specific functions

The Example 1 below shows a PD code fragment that follows the 'API Usage Flow' outlined in Figure 2. For simplicity each device on
the 1-Wire network is discovered each pass through the work loop. A more sophisticated application could potentially find just one
device type or perhaps select a device found in a previous search.

Example 1. PD Code Example

int rslt, portnum=0, doing_work=1;
char portString[50]; // set to platform appropriate port string

// work loop
while (doing_work)
{
 // acquire the 1-Wire Net (SESSION)
 if (owAcquire(portnum, portString))
 {
 // find all devices (NETWORK)
 rslt = owFirst(portnum, TRUE, FALSE);
 while (rslt)
 {
 // do SOMETHING with device found (TRANSPORT/FILE/DEVICE)
 // . . .

 // find the next device (NETWORK)
 rslt = owNext(portnum, TRUE, FALSE);
 }
 // release the 1-Wire Net (SESSION)
 owRelease(portnum);
 }
 else
 {
 // Could not acquire 1-Wire network
 // . . .
 }

 // do other application work
 // . . .
}

8 of 24

The outlines below ('a' and 'b') lists the C-language modules that make up each of the two sets of 1-Wire PD libraries. Also displayed
are the 'TODO' functions that must be provided to port the library to a new platform. Note several example platform link files that
implement the 'TODO' functions are provided in the kit.

a. PD 'USERIAL' Implementation

● SESSION
❍ owsesu.c

● LINK

❍ owllu.c
❍ ds2480ut.c
❍ ds2480.h

● NETWORK

❍ ownetu.c
❍ crcutil.c

● TRANSPORT

❍ mbappreg.c
❍ mbappreg.h
❍ mbee.c
❍ mbee.h
❍ mbeprom.c
❍ mbeprom.h
❍ mbnv.c
❍ mbnv.h
❍ mbnvcrc.c
❍ mbnvcrc.h
❍ mbscr.c
❍ mbscr.h
❍ mbscrcrc.c
❍ mbscrcrc.h
❍ mbscree.c
❍ mbscree.h
❍ mbscrex.c
❍ mbscrex.h
❍ mbsha.c
❍ mbsha.h
❍ mbshaee.c
❍ mbshaee.h
❍ owtrnu.c
❍ rawmem.c
❍ rawmem.h

● FILE

❍ owcache.c
❍ owfile.c
❍ owfile.h
❍ owpgrw.c
❍ owprgm.c

● DEVICE

❍ ad26.c
❍ ad26.h
❍ atod20.c
❍ cnt1d.c
❍ jib96.c
❍ jib96o.c
❍ jib96.h
❍ sha18.c
❍ sha33.c
❍ shadebit.c
❍ shadbtvm.c

9 of 24

❍ shaib.c
❍ shaib.h
❍ swt05.c
❍ swt12.c
❍ swt12.h
❍ swt1f.c
❍ temp10.c
❍ thermo21.c
❍ thermo21.h
❍ weather.c
❍ weather.h

● MISC UTILITY

❍ ioutil.c
❍ owerr.c
❍ findtype.c
❍ ownet.h
❍ screenio.c
❍ sprintf.c

● TODO

Provided a SERIAL interface module that implements the following functions:
❍

❍ BreakCOM*: Sends a 'BREAK' on the serial port for at least 2ms.
❍ CloseCOM: Closes the previously opened serial port. (optional for some platforms)
❍ FlushCOM*: Allows any pending write operations to complete and clear input buffer.
❍ msDelay*: Delays at least the specified number of milliseconds.
❍ msGettick: Returns an increment millisecond counter. (optional for some examples)
❍ OpenCOM: Opens the specified serial port for communication. (optional for some platforms)
❍ ReadCOM*: Reads a specified number of bytes from the serial port.
❍ SetCOMBaud: Changes the serial BAUD rate to the rate specified. (optional if need overdrive)
❍ WriteCOM*: Writes a specified number of bytes to the serial port.

* Minimum functions required for basic operation

b. PD 'General' Implementation

● SESSION
(see TODO)

● LINK
(see TODO)

● NETWORK
❍ ownet.c
❍ crcutil.c

● TRANSPORT

Same as USERIAL implementation except 'owtrnu.c' is replaced by 'owtran.c'.

● FILE
Same as USERIAL implementation.

● DEVICE
Same as USERIAL implementation.

● MISC UTILITY
Same as USERIAL implementation.

● TODO
Provided a LINK and SESSION interface module that implements the following functions:

❍ owAcquire: Acquires the 1-Wire net.
❍ owRelease: Releases the previously acquired 1-Wire net.
❍ owHasOverDrive: Indicates whether the adapter has overdrive capability.
❍ owHasPowerDelivery: Indicates whether the adapter can deliver power.

10 of 24

❍ owHasProgramPulse: Indicates whether or not EPROM programming voltage is available.
❍ owLevel: Sets the 1-Wire net line level to Normal (5V weak pullup), Power Delivery (5V strong pullup), or Program

Level (12V EPROM programming level).
❍ owProgramPulse: Sends timed programming pulse for EPROM 1-Wire device writing.
❍ owReadBitPower: Reads 1 bit and then optionally supplies power.
❍ owReadByte: Receives 8 bits from the 1-Wire net by sending all 1's (0xFF).
❍ owSpeed: Sets the speed of the 1-Wire net to Normal (16K bits) or Overdrive (142K bits).
❍ owTouchBit*: Sends and receives 1 bit from the 1-Wire net.
❍ owTouchByte: Sends and receives 8 bits from the 1-Wire net.
❍ owTouchReset*: Resets all devices on the 1-Wire net and return result.
❍ owWriteByte: Sends 8 bits to the 1-Wire net and verifies the echo received matches.
❍ owWriteBytePower: Sends 8 bits of communication to the 1-Wire net and then supplies power.

* Minimum functions required for basic operation

Installation

The 1-Wire Public Domain API is a set of C modules so there is no formal installation. As provided in the example 'builds', the
required modules are compiled directly into the applications. This does not preclude developers from combining the modules into a
loadable library such as a Windows DLL.

1-Wire API for Java (OWAPI) Overview

The 1-Wire API for Java was designed from the ground up to be a very robust, highly object-oriented foundation for building 1-Wire
applications in Java. It extends the ability of programmers to develop portable, cross-platform software and shortens the time to
market for their 1-Wire integrated products.

The API consists of many Java classes and interfaces. One special group of Java classes in the 1-Wire API is the container (class
OneWireContainer). Support for particular 1-Wire devices, including iButtons, is provided through containers. The API has over 30
different container types, representing most 1-Wire devices. Each container encapsulates and implements the functionality of an
individual device.

A "container" interacts with a 1-Wire device through a 1-Wire adapter class that represents a physical 1-Wire adapter (class
DSPortAdapter). The instance of the adapter is produced from the provider class (class OneWireAccessProvider). The actual
implementations of the 1-Wire adapters vary from platform to platform but they all have the same interface. Some platforms use
native drivers but most at least support the DS9097U-XXX serial adapters using the Java Communications API (or equivalent). This
API is available from Sun's Web site: http://java.sun.com/products/javacomm. The 1-Wire API for Java kit is located at: http://www.
ibutton.com/software/1wire/1wire_api.html. Like the 1-Wire Public Domain kit, the complete Java source to OWAPI is provided under
a public-domain-style license.

Figure 3 shows the typical object creation sequence for this API. The 'provider' creates an instance (or enumeration) of 'adapter'
which in turn can create instances of device 'container's. Communication to the device is then performed almost exclusively through
the 'container'.

11 of 24

http://java.sun.com/products/javacomm
http://www.ibutton.com/software/1wire/1wire_api.html
http://www.ibutton.com/software/1wire/1wire_api.html

 Figure 3. OWAPI Object
Creation

Figure 4 shows the common features of a 'container'. A device that contains memory will create a 'memory bank' instance for each
memory bank. The memory is divided up into banks depending on the feature set of the bank. For example one bank could be volatile
while another is nonvolatile. Or a bank could be general-purpose memory or it could be 'memory-mapped' to change the functionality
of the device.

Figure 4. OWAPI OneWireContainer Features

The outline below shows the methods provided by the base OWAPI classes. The class or package is displayed in bold. Note that
since each container has high level methods to manipulate each device type, the LINK level methods in the adapter are not usually
called directly.

OWAPI Functions

● SESSION
com.dalsemi.onewire.adapter.DSPortAdapter

❍ beginExclusive: Acquires exclusive use of the 1-Wire net.
❍ endExclusive: sRelease the exclusive lock on the 1-Wire net.

● LINK

com.dalsemi.onewire.adapter.DSPortAdapter
❍ canBreak: Checks if a 1-Wire 'break' (long low) operation is supported by the adapter.
❍ canDeliverPower: Checks if 'strong-pullup' power delivery is supported by the adapter.
❍ canDeliverSmartPower: Checks if 'smart' power delivery is supported by the adapter. 'smart' power delivery is the

ability to sense when power consumption has reduced and automatically stop the power delivery.
❍ canFlex: Checks if flexible long-line communication timing is supported by the adapter.
❍ canHyperdrive: Checks if hyperdrive communication speed is supported by the adapter.
❍ canOverdrive: Checks if overdrive communication speed is supported by the adapter.
❍ canProgram: Checks if 12V EPROM programming voltage is supported by the adapter.
❍ dataBlock: Send and receive a block of data to the 1-Wire net.

12 of 24

❍ getBit: Read a single bit from the 1-Wire net.
❍ getBlock: Read a block from the 1-Wire net (by sending all (0xFF's)).
❍ getByte: Read a byte from the 1-Wrire net by sending all 1's (0xFF).
❍ getSpeed: Read the current 1-Wire communication speed.
❍ putBit: Write a bit to the 1-Wire net.
❍ putByte: Write a byte to the 1-Wire net and verify the echo is correct.
❍ reset: Reset all of the 1-Wire net devices.
❍ setPowerDuration: Set the power delivery duration.
❍ setPowerNormal: Turn off the power delivery.
❍ setProgramPulseDuration: Set the program pulse duration.
❍ setSpeed: Set the 1-Wire communication speed.
❍ startBreak: Start a break (low) on the 1-Wire net.
❍ startPowerDelivery: Start the power delivery.
❍ startProgramPulse: Start the program pulse.

● NETWORK

com.dalsemi.onewire.adapter.DSPortAdapter
❍ excludeFamily: Exclude a family group from the search.
❍ findFirstDevice: Find the first device on the 1-Wire net without auto container creation.
❍ findNextDevice: Find the next device on the 1-Wire net without auto container creation.
❍ getAllDeviceContainers: Search and find all devices on the 1-Wire net with containers.
❍ getDeviceContainer: Get a device container for the 'current' device found.
❍ getFirstDeviceContainer: Find the first device and create a container for it.
❍ getNextDeviceContainer: Find the next device and create a container for it.
❍ setNoResetSearch: Set the 1-Wire net search to not issue a 1-Wire reset.
❍ setSearchAllDevices: Set the 1-Wire net search to include all devices (remove alarm-only).
❍ setSearchOnlyAlarmingDevices: Set the 1-Wire net search to only include alarming devices.
❍ targetAllFamilies: Set the 1-Wire net search to include all devices (remove exclusions).
❍ targetFamily: Target a particular family group in the 1-Wire net search.

(also in com.dalsemi.onewire.container.*)
❍ isAlarming: Check to see if the device is in an alarm state.
❍ isPresent: Check to see if the device is present on the 1-Wire net.
❍ select: Selects the 1-Wire net device to ready it for a device specific operation command.

● TRANSPORT

com.dalsemi.onewire.container.MemoryBank
❍ getBankDescription: Return a text description of the memory bank.
❍ getSize: Get the size of the memory bank in bytes.
❍ getStartPhysicalAddress: Get the starting physical address of the memory bank.
❍ isGeneralPurposeMemory: Checks if the memory bank is general purpose (not memory mapped).
❍ isNonVolatile: Checks if the memory bank is not volatile.
❍ isReadOnly: Checks if the memory bank is read-only.
❍ isReadWrite: Checks if the memory bank is read and write capable.
❍ isWriteOnce: Checks if the memory bank is write-once such as EPROM.
❍ needsPowerDelivery: Checks if this memory bank requires power delivery to write.
❍ needsProgramPulse: Checks if this memory bank requires program pulse to write.
❍ read: Reads the memory bank without interpretation (no packet structure).
❍ setWriteVerification: Sets the API to do an extra verification after writes.
❍ write: Writes the memory bank raw (no packet structure).

com.dalsemi.onewire.container.PagedMemoryBank
❍ getExtraInfoDescription: Get a description of extra information associated with this bank.
❍ getExtraInfoLength: Get the length in bytes of the extra information in each page.
❍ getMaxPacketDataLength: Get the maximum length of data that can be contained in the 'packet' structure that will fit

in each page of this memory bank.
❍ getNumberPages: Get the number of pages in this memory bank.
❍ getPageLength: Get the length in byte of the raw page in this memory bank.
❍ hasExtraInfo: Checks if this memory bank has extra information associated with each page.
❍ hasPageAutoCRC: Checks if the pages in this memory bank have CRC verification that is supplied by the device.
❍ readPage: Reads a page from the memory bank.
❍ readPageCRC: Read a page from the memory bank utilizing the device generated CRC.
❍ readPagePacket: Read a packet structure from a page in the memory bank.
❍ writePagePacket: Write a packet structure to a page in the memory bank.

com.dalsemi.onewire.container.OTPMemoryBank
❍ canLockPage: Checks if the pages in the memory bank can be locked from further writes.
❍ canLockRedirectPage: Checks to see if the redirection facilities in the memory bank can be locked to prevent further

13 of 24

redirection.
❍ canRedirectPage: Checks to see if the memory bank can have pages redirected as a way to update write-once

pages.
❍ getRedirectedPage: Get the page number that a page is redirected to.
❍ isPageLocked: Checks if the page is locked from further writes.
❍ isRedirectPageLocked: Checks if the page is locked from further redirection.
❍ lockPage: Locks a page.
❍ lockRedirectPage: Locks the page from being redirected.
❍ redirectPage: Redirects a page to a new page. This is used to update a write-once device.

● FILE

com.dalsemi.onewire.utils.OWFile
Same methods in java.io.File (for version 1.2 of the JDK) plus the following extra methods:

❍ close: Close the file and releases any resources associated with it.
❍ format: Format the 1-Wire File System associated with the device(s) provided to this OWFile.
❍ getFD: Get a OWFileDescriptor for this file so the file can be 'synced' with the device.
❍ getFreeMemory: Get the available free memory in the 1-Wire File System.
❍ getLocalPage: Get a memory bank local page reference from the 1-Wire File System page.
❍ getMemoryBankForPage: Get the memory bank instance that can be used to read/write the provided 1-Wire File

System page.
❍ getOneWireContainer: Get the container(s) that make up the file system.
❍ getPageList: Get a list of 1-Wire File System pages that comprise the file.

com.dalsemi.onewire.utils.OWFileDescriptor
Same methods as in java.io.FileDescriptor (for version 1.2 of the JDK)
com.dalsemi.onewire.utils.OWFileOutputStream
Same methods as in java.io.FileOutputStream (for version 1.2 of the JDK)
com.dalsemi.onewire.utils.OWFileInputStream
Same methods as in java.io.FileInputStream (for version 1.2 of the JDK)

● DEVICE
com.dalsemi.onewire.container.*
Over 30 different device specific container implementations including six different 'sensor' type interfaces:

❍ ADContainer: Analog-to-digital converter
❍ ClockContainer: Clock
❍ SwitchContainer: Switch
❍ TemperatureContainer: Temperature sensor
❍ PotentiometerContainer: Digital potentiometer
❍ HumidityContainer: Humidity sensor

com.dalsemi.onewire.application.*
SHA and 1-Wire Tagging utility classes.
com.dalsemi.onewire.jib.* Provide OpenCard support for the Java-powered iButton (Opencard info at http://www.opencard.
org)

The Example 2 below shows a OWAPI code fragment that follows the 'API Usage Flow' outlined in Figure 2. For simplicity each
device on the 1-Wire network is discovered each pass through the work loop. A more sophisticated application could potentially find
just one device type or perhaps select a device found in a previous search.

Example 2. OWAPI Code Example

boolean doing_work=true;

// get the default adapter from the service provider
DSPortAdapter adapter = OneWireAccessProvider.getDefaultAdapter();

// work loop
while (doing_work)
{
 // get exclusive use of adapter (SESSION)
 adapter.beginExclusive(true);

 // clear any previous search restrictions (NETWORK)
 adapter.setSearchAllDevices();
 adapter.targetAllFamilies();

14 of 24

http://www.opencard.org/
http://www.opencard.org/

 adapter.setSpeed(adapter.SPEED_REGULAR);

 // enumerate through all the 1-Wire devices found (NETWORK)
 for (Enumeration owd_enum = adapter.getAllDeviceContainers(); owd_enum.hasMoreElements();)
 {
 // get a 'container' for each device
 OneWireContainer owd = (OneWireContainer) owd_enum.nextElement();

 // do SOMETHING with device found (TRANSPORT/FILE/DEVICE)
 // . . .
 }

 // end exclusive use of adapter (SESSION)
 adapter.endExclusive();

 // do other application work
 // . . .
}

1-Wire Tagging

As 1-Wire sensors get more numerous and diverse it becomes increasingly difficult to manage a 1-Wire network. For example, a
sensor like an A/D could measure various different values so it becomes important to be able to 'tag' the sensor to describe its
function. A 1-Wire Tagging scheme using XML has been created and implemented in the 1-Wire API for Java. These tags allow an
application to dynamically load and configure a sensor to give it a context. Please see Application Note 158: "1-Wire Tagging with
XML" for details.

Installation

All of the required modules that make up the API calls described in the outline above are contained in a single jar file: OneWireAPI.
jar. Placing this one module in the correct location or classpath provides the entire API. There are two noted exceptions to this: there
could be native or communication APIs required to be installed for a particular platform, or the platform could have size constraints so
that it is undesirable to have the entire API available. These two exceptions are examined in detail in the OWAPI kit.

1-Wire COM (OWCOM) Overview

The 1-Wire Windows COM (Component Object Model) framework is simply a wrapper for the 1-Wire API for Java (OWAPI). Almost
any programming language that works on 32-bit Microsoft Windows operating systems can use COM objects. Since this utilizes
OWAPI, our richest collection of support classes for Dallas Semiconductor's 1-Wire devices is available to a variety of programming
environments including C++, VisualBasic, JavaScript, JScript, Perl, and VBScript.

Since Java and COM are not completely compatible, several workarounds had to be used to get the existing Java code-base to work
in a COM interface. These workarounds are outlined in the next section.

The Software Developer Kit containing OWCOM (and TMEX) can be found on this site:
http://www.ibutton.com/software/tmex/index.html

The Java source code to create OWCOM is provided under a liberal PD-style license. The only source not provided is for the TMEX
API drivers that are called to support the different 1-Wire adapters (see TMEX API section). These drivers, however, can be
redistributed without restriction.

OWCOM Differences With OWAPI

Since the underlying structure of all the interfaces is actually implemented using the OWAPI, the documentation is the same. There
are just a few rules of thumb for applying the Java documentation to a COM interface.

1. Java uses 64-bit longs and the interfaces used in COM don't support a number larger than 32-bits. For any function in Java
that takes a long as a parameter or returns a long, a string is used. In loosely typed programming languages (like VisualBasic

15 of 24

http://www.maxim-ic.com/appnotes.cfm/appnote_number/158
http://www.maxim-ic.com/appnotes.cfm/appnote_number/158
http://www.ibutton.com/software/tmex/index.html

or JavaScript), the conversion between long and string will be automatic and probably won't affect the code in any way. For
all other languages, special care must be taken that parameters are converted to strings and return values are converted to
64-bit longs.

2. Several of the classes in OWAPI use an array of bytes for caching state information about an object. Unfortunately,
languages that don't allow for passing values by reference (like JavaScript) actually clone the data in the array for passing as
a parameter. Since this breaks the functionality expected from passing array values as parameters, an object was created for
containing arrays of bytes. The object, ByteArray, is the only object whose equivalent doesn't exist in the current Java
OneWire API and, as such, the necessary documentation is produced below:

ByteArray
{
 // sets the item at the given index with the given value
 void setAt(nIndex,nValue);

 // returns the numerical value at the given index
 nValue getAt(nIndex);

 // grows or shrinks the size of the array, copies all data that fits
 void setSize(nSize);

 // returns the size of the array
 nSize getSize();
}

3. In Java, method overloading allows for methods to differ in types of their parameters as well as in the number of parameters.
In COM, only the number of parameters can distinguish two methods with the same name. All the methods that would conflict
with this requirement fit into the same pattern. They were either expecting a string, a long, or an array of bytes. The method
that expects a string was left alone while the method expecting a long has a new name with "FromLong" on the end. The
method expecting an array of bytes has "FromBytes" added on the end. For example:

Java COM Reason
isPresent(String) isPresent(String)
isPresent(long) isPresentFromLong(String) By rule #1 and #3
isPresent(byte[]) isPresentFromBytes(ByteArray) By rule #2 and #3

4. Some containers in OWAPI depend on polymorphism for their functionality. Polymorphism is, essentially, the ability of a class
to be treated as if it was actually an instance of a parent class. In COM, polymorphism doesn't manifest itself in quite the
same way since COM doesn't support inheritance. Each COM component in our architecture represents an actual instance of
an object from OWAPI, but usually a higher-level component (like MemoryBank) will actually contain an instance of a lower-
level object (like PagedMemoryBank or OTPMemoryBank). In Java, simply cast the object to it's specific type. Unfortunately,
it's not that easy in COM, so a helper method was added to three top-level containers: OneWireContainer, MemoryBank, and
DSPortAdapter. The interface for the helper method is simply:

Component getMostSpecificComponent();

The return value depends on which class is being called. For example, an instance of OneWireContainer that is actually
holding a Thermochron object (OneWireContainer21), calling getMostSpecificComponent will return an instance of the
OneWireContainer21 COM interface.

5. Another feature that is lost with polymorphism is the mechanism by which it is discovered whether or not a particular 1-Wire
device supports a particular interface. Polymorphism also allows a class to be treated as if it was actually an instance of an
interface that the class implements. OneWireContainer21, for example, implements the interface TemperatureContainer. That
is to say, OneWireContainer21 implements all methods that are common among TemperatureContainers (like
"readTemperature"). In Java, it is common to compare an instance of a 1-Wire object with a particular interface using the
"instanceof" keyword. If the "myOneWireDevice instanceof TemperatureContainer" statement returned true, then the device
implements all the methods necessary for reading temperatures. The solution in COM is to use these methods defined in all
OneWireContainers:

boolean isTemperatureContainer();
boolean isADContainer();

16 of 24

boolean isSwitchContainer();
boolean isClockContainer();
boolean isPotentiometerContainer();
boolean isHumidityContainer(); [NOT YET IMPLEMENTED]

6. Functions in Java that used to return the java.util.Calendar object now return the current time in milliseconds since Jan 1,
1970 GMT. This is the unix standard for representing time.

7. The interfaces are not in Java-style packages but now reside all at the same level. For example OneWireContainer21 no
longer is in package com.dalsemi.onewire.container.OneWireContainer21 but is accessed from the COM package simply as
OneWireContainer21.

The Example 3 below shows a OWCOM code fragment that follows the 'API Usage Flow' outlined in Figure 2. For simplicity, each
device on the 1-Wire network is discovered each pass through the work loop. A more sophisticated application could potentially only
find one device type or perhaps select a device found in a previous search.

Example 3. OWCOM 'JavaScript' Code Example

boolean doing_work=true;

// get the 1-Wire access provider
var access = WScript.CreateObject("owapi.OneWireAccessProvider");

// get the default adapter
var adapter = access.getDefaultAdapter();

// work loop
while (doing_work)
{
 // get exclusive use of adapter (SESSION)
 adapter.beginExclusive(true);

 // clear any previous search restrictions (NETWORK)
 adapter.setSearchAllDevices();
 adapter.targetAllFamilies();
 adapter.setSpeed(adapter.SPEED_REGULAR);

 // enumerate through all the 1-Wire devices found (NETWORK)
 for (Enumeration owd_enum = adapter.getAllDeviceContainers();
 owd_enum.hasMoreElements();)
 {
 // get a 'container' for each device
 owd = owd_enum.nextElement();

 // do SOMETHING with device found (TRANSPORT/FILE/DEVICE)
 // . . .
 }

 // end exclusive use of adapter (SESSION)
 adapter.endExclusive();

 // do other application work
 // . . .
}

Installation

There is a batch file provided that automatically installs the OWCOM driver. It registers the COM object with the regsvr32 Windows
tool and then copies the OWAPI class files to a 'trusted' folder.

TMEX API (TMEX) Overview

17 of 24

The TMEX API is a set of language independent Windows 32-Bit DLLs that provides basic functionality to all 1-Wire devices including
limited 1-Wire File Structure support to memory devices. The API is designed to work in multiprocess multithreaded applications all
vying for the same or different 1-Wire ports. The API can support up to 16 different types of 1-Wire adapters each with 16 distinct
ports. It supports all of the 1-Wire adapters created by Dallas Semiconductor. Consequently this API is used as the 'native' drivers for
the 1-Wire API for Java on the Win32 platforms. Since the 1-Wire COM API is based on the 1-Wire API for Java it is also used there.
Figure 5 shows graphically how the other API's take advantage of the Win32 native support that the TMEX API provides. Included in
this figure are the actual driver filenames and how they are layered.

The Software Developer's Kit containing the TMEX API (and OWCOM) is located at:
http://www.ibutton.com/software/tmex/index.html

All of the examples provided in the TMEX SDK are provided with source code, however the source to the drivers is currently not
provided. The drivers however can be redistributed without restriction.

Table 5 below lists the currently supported 1-Wire adapters along with the features of each adapter and the supported Windows
platforms. Note that the Windows XP support is still in development.

Table 5. TMEX Adapters Supported

Adapter Port Features Win95 Win98 WinME WinNT Win2K WinXP

DS1490F 2-in-1 Fob USB

Power delivery
Overdrive
LED indicator
Single iButton holder

 X X X X*

DS1490x (future product) USB

Power delivery
Overdrive
RJ-11 or iButton holder
Optional EPROM write

 X X X X

DS1410E Parallel

Power delivery
Overdrive
Dual iButton holder
DS2401 ID

X X X X X X

DS1410D Parallel Dual iButton holder DS2401
ID X X X X X X

DS9097U-009 Serial

Power delivery
Overdrive
RJ-11 connector
DS2502 ID

X X X X X X

DS9097U-S09 Serial
Power delivery
Overdrive
RJ-11 connector

X X X X X X

DS9097U-E25 Serial

Power delivery
Overdrive
RJ-11 connector
EPROM write

X X X X X X

DS1411 Serial Power delivery
Overdrive Single iButton holder X X X X X X

DS9097E Serial RJ-11 connector
EPROM write X X X X X X

DS9097 Serial RJ-11 connector X X X X X X
DS1413 Serial Single iButton holder X X X X X X

18 of 24

http://www.ibutton.com/software/tmex/index.html

Figure 5. TMEX API Drivers and Other API Connectivity

The outline below lists functions provided by the TMEX API. Note that this API does not provide any non-memory device specific
functions.

TMEX API Functions

● SESSION
❍ TMEndSession: relinquish the 1-Wire net.
❍ TMExtendedStartSession: request exclusive use of the 1-Wire net.
❍ TMValidSession: check to see if the current 1-Wire net session is valid.

● LINK

❍ TMClose: Releases resources for the opened port (not always applicable)
❍ TMOneWireCom: Sets the speed of the 1-Wire net to Normal (16kb) or Overdrive (142kb).
❍ TMOneWireLevel: Sets the 1-Wire net line level to Normal (5V weak pullup), Power Delivery (5V strong pullup), or

Program Level (12V EPROM programming level).
❍ TMProgramPulse: Send a timed programming pulse to 1-Wire net for EPROM programming.
❍ TMSetup: Checks and verifies the port and adapter is functioning.
❍ TMTouchBit: Sends and receives 1 bit from the 1-Wire net.
❍ TMTouchByte: Sends and receives 1 byte from the 1-Wire net
❍ TMTouchReset: Resets all devices on the 1-Wire net and returns the result.

● NETWORK

❍ TMAccess: Selects the current device and readies it for a device-specific command.

19 of 24

❍ TMAutoOverDrive: Sets the driver to automatically get the device in and out of overdrive speed
❍ TMFamilySearchSetup: Sets the current search state to find a specified family type on the next search (TMNext or

TMNextAlarm)
❍ TMFirst: Searches to find the 'first' 1-Wire device on the 1-Wire net.
❍ TMFirstAlarm: Searches to find the 'first' alarming 1-Wire device on the 1-Wire net.
❍ TMNext: Searches to find the 'next' 1-Wire device on the 1-Wire net.
❍ TMNextAlarm: Searches to find the 'next' alarming 1-Wire device on the 1-Wire net.
❍ TMOverAccess: Select the current device and places it in overdrive speed.
❍ TMRom: Retrieves or sets the currently selected device serial number (ROM number).
❍ TMSkipFamily: Skips all of the family type that was found in the last search.
❍ TMStrongAccess: Selects and verifies that the current device is present.
❍ TMStrongAlarmAccess: Selects and verifies that the current device is present AND alarming.

● TRANSPORT

❍ TMBlockIO: Sends and receives a block of data to the 1-Wire net preceded with a 1-Wire reset.
❍ TMBlockStream: Sends and receives a block of data to the 1-Wire net with NO 1-Wire reset.
❍ TMExtendedReadPage: Reads an entire page of a memory bank with device generated CRC verification (not

applicable to all device types).
❍ TMProgramByte: Programs a byte into an EPROM base 1-Wire device.
❍ TMReadPacket: Reads a Universal Data Packet from a page. (See Application Note 114 for Universal Data Packet

structure description).
❍ TMWritePacket: Writes a Universal Data Packet to a page.

● FILE

❍ TMAttribute: Changes file or directory attributes.
❍ TMChangeDirectory: Reads or changes the current working directory.
❍ TMCloseFile: Closes an opened or created file to free-up the file handle.
❍ TMCreateFile: Creates a file for writing.
❍ TMCreateProgramJob: Creates a write buffer for logging EPROM programming pending jobs.
❍ TMDeleteFile: Deletes a file.
❍ TMDirectoryMR: Makes or Removes a sub-directory.
❍ TMDoProgramJob: Write the pending EPROM programming jobs.
❍ TMFirstFile: Finds the first file in the current directory.
❍ TMFormat: Formats the 1-Wire File Structure file system.
❍ TMNextFile: Finds the next file in the current directory.
❍ TMOpenFile: Opens a file for reading.
❍ TMReadFile: Reads an opened file.
❍ TMReNameFile: Renames a file or directory.
❍ TMTerminateAddFile: Terminates an 'AddFile'. An 'AddFile' is a special file type on an EPROM device that can be

appended to without rewriting.
❍ TMWriteAddFile: Appends or alters an 'AddFile' on an EPROM device.
❍ TMWriteFile: Writes to a file that has been created.

● DEVICE

None

● OTHER
❍ TMGetTypeVersion: Gets the version information for the adapter driver.
❍ Get_Version: Gets the overall driver version.

Example 4. TMEX 'C' Code Example

int PortNum, PortType; // port number and type set for adapter present
long session_handle; // session handle
unsigned char state_buffer[5120];
int doing_work=1, did_setup=0;
short rslt;

// work loop
while (doing_work)
{
 // aquire the 1-Wire Net (SESSION)
 session_handle = TMExtendedStartSession(PortNum,PortType,NULL);

20 of 24

http://www.maxim-ic.com/appnotes.cfm/appnote_number/114

 if (session_handle > 0)
 {
 // check to see if TMSetup has been done once
 if (!did_setup)
 {
 if (TMSetup(session_handle) == 1)
 did_setup = 1;
 else
 {
 // error setting up port, adapter may not be present
 // . . .
 }
 }
 else
 {
 // find all devices (NETWORK)
 rslt = TMFirst(session_handle, state_buf);

 while (rslt > 0)
 {
 // do SOMETHING with device found (TRANSPORT/FILE/DEVICE)
 // . . .

 // find the next device (NETWORK)
 rslt = TMNext(session_handle, state_buf);
 }
 }

 // release the 1-Wire Net (SESSION)
 TMEndSession(session_handle);
 }
 else
 {
 // Could not acquire 1-Wire network
 // . . .
 }

 // do other application work
 // . . .
}

Installation

The TMEX API comes with an automated Install-Shield install program that loads all of the Windows drivers and registry keys for
every supported 1-Wire adapter. The install is available with and without the iButton viewer. The files are also provided for custom
installations. The iButton viewer is a demonstration program to exercise most of the 1-Wire devices and iButtons.

OTHER TOOLS

While the four API's discussed in this document represent a large part of the available resources to communication with 1-Wire
devices it is by no means the only resource. This section outlines some other available resources.

iB-IDE

The iB-IDE provides a complete programming environment designed to aid in rapid software development for the Java-powered
iButton. A Java host application located on a personal computer or embedded system communicates with any applets installed on the
iButton, and with the introduction of iB-IDE the design of both is easy. Some of iB-IDE's main features include:

● Fully-functioning Java-powered iButton simulator with Java source code level debugging
● Built-in text editor with Java keyword highlighting, macros, search and replace, and Java language-sensitive formatting
● Integrated Java-compile and run functionality, and the ability to communicate with and control iButtons connected to your

21 of 24

system

Starting with version 2.0Beta, the iB-IDE uses the 1-Wire API for Java as its core to do the communication with the Java-powered
iButton.

Information and download of the iB-IDE can be found here:
http://www.ibutton.com/iB-IDE/

Software Authorization

Software authorization is simply the locking of a software application to require the presence of a hardware token. The token in this
case is an iButton connected to the user's workstation. The application queries for the presence and validity of the iButton before
running and potentially while the application executes. In practice, any of the API's outlined in this document can be used for this type
of application, however there are specific concerns that must be considered. External drivers present a weakness to the security by
allowing a user to replace the driver and thereby defeat the lock. The software authorization API has been developed specifically for
this type of application and includes linkable modules instead of external drivers.

Information on the software authorization kit can be found here:
http://www.ibutton.com/software/softauth/index.html

1-Wire Software Development Interest Group

It is recommended that 1-Wire developers join the '1-Wire Software Developer's Forum'. The purpose of this group is to explore,
discuss, and answer questions about developing applications, tools, and uses for the 1-Wire family of products. This forum is
monitored by Dallas Semiconductor applications engineers to answer questions posed by the group. Announcements about updates
to the API's and kit downloads are also distributed to this group. To subscribe go to http://lists.dalsemi.com/.

Third Party

There is a large volume of third-party software available for 1-Wire devices. Some of these are applications produced by Dallas
Semiconductor Authorized Solutions Developer (ASD) for purchase with their 'solution'. A complete list of ASD's and a solution
locator is provided on this site: http://www.maxim-ic.com/products/ibutton/solutions/search.cfm. There are also open source projects
on public forums like 'Source Forge' www.sourceforge.net.

Conclusion

This document has provided an overview of the characteristics of any 1-Wire API. It has also detailed four different API's including the
supported platforms and programming languages. A quick-reference table providing each API's coverage of each device type helped
facilitate selection of which API to use. With the correct API in hand an application utilizing 1-Wire can readily be created.

1-Wire, iButton, Thermochron, and TINI are registered trademarks of Dallas Semiconductor. Java is a trademark of Sun Microsystems.

More Information

22 of 24

http://www.ibutton.com/iB-IDE/
http://www.ibutton.com/software/softauth/index.html
http://lists.dalsemi.com/
http://www.maxim-ic.com/products/ibutton/solutions/search.cfm
http://www.sourceforge.net/

DS1425: QuickView
-- Full (PDF) Data
Sheet

DS1822: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS18B20: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS18S20: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1904: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1920: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1921G: QuickView
-- Full (PDF) Data
Sheet

DS1921H: QuickView
-- Full (PDF) Data
Sheet

DS1921Z: QuickView
-- Full (PDF) Data
Sheet

DS1963L: QuickView
-- Full (PDF) Data
Sheet

DS1963S: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1971: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1973: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1982: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1985: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1990A: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1991: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1992: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1993: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1994: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1995: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS1996: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2401: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2404: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2405: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2406: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

23 of 24

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2715/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1425.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1425.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2795/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1822.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1822.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1822&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2812/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS18B20.pdf
http://pdfserv.maxim-ic.com/en/ds/DS18B20.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18B20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2815/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS18S20.pdf
http://pdfserv.maxim-ic.com/en/ds/DS18S20.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18S20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2817/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1904-DS1904L-F5.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1904-DS1904L-F5.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1904&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2818/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1920.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1920.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1920&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4023/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1921G.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1921G.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3246/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1921H-DS1921Z.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1921H-DS1921Z.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3246/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1921H-DS1921Z.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1921H-DS1921Z.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2821/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1963L.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1963L.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2822/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1963S.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1963S.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1963S&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2823/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1971-F3-DS1971-F5.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1971-F3-DS1971-F5.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1971&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2824/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1973-F3-DS1973-F5.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1973-F3-DS1973-F5.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1973&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2825/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1982-F3-DS1982-F5.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1982-F3-DS1982-F5.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1982&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2827/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1985-F3-DS1985-F5.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1985-F3-DS1985-F5.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1985&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2829/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1990A-F3-DS1990A-F5.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1990A-F3-DS1990A-F5.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1990A&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2830/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1991.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1991.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1991&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2831/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1992-DS1993.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1992-DS1993.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1992&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2831/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1992-DS1993.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1992-DS1993.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1993&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3794/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1994.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1994.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1994&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2832/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1995.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1995.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1995&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2833/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1996.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1996.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1996&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2903/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2401.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2401.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2401&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2904/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2404.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2404.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2404&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2906/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2405.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2405.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2405&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2907/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2406.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2406.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2406&ln=en

DS2407: QuickView
-- Full (PDF) Data
Sheet

DS2409: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2415: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2417: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2423: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2430A: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2431: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2432: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2433: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2438: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2450: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2502: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2505: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2506: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2720: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2740: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2751: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2760: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2761: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2762: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2770: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2890: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

24 of 24

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2908/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2407.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2407.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2909/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2409.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2409.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2409&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2910/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2415.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2415.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2415&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2911/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2417.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2417.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2417&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2912/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2423.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2423.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2423&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2913/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2430A.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2430A.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2430A&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4272/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2431.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2431.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2431&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2914/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2432.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2432.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2432&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2915/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2433.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2433.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2433&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2919/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2438.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2438.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2438&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2921/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2450.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2450.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2450&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2924/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2502.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2502.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2502&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2927/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2505.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2505.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2505&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2928/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2506.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2506.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2506&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3471/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2720.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2720.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2720&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3801/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2740.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2740.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2740&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3823/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2751.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2751.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2751&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2931/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2760.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2760.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2760&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3468/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2761.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2761.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2761&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3950/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2762.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2762.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2762&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3281/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2770.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2770.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2770&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2934/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2890.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2890.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2890&ln=en

